Structure Reports

Online
ISSN 1600-5368

Chun-Nian Xia, Wei-Xiao Hu* and Wei Zhou

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China

Correspondence e-mail: huyang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.062$
$w R$ factor $=0.181$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Octyl 3-(3,4-dihydroxyphenyl)prop-2-enoate

The title molecule, $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$, has an E configuration and shows normal values of bond lengths and angles. A bow angle was revealed in the longer ester group. The hydroxy groups contribute to intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which link the molecules into ribbons extended in the (110) direction.

Comment

Caffeic acid and its derivatives are widely distributed in the plant kingdom (Chen et al., 1999). These compounds exhibit anti-atherosclerotic, antibacterial, anti-inflammatory, antiproliferative, immunostimulatory, anti-oxidative, antiviral and neuroprotective properties (Son \& Lewis, 2002). In a continuation of our research on structure-activity relationships (Xia \& $\mathrm{Hu}, 2005$), we have obtained the title compound, (I), as a product of the modified Knoevenagel condensation reaction of 3,4-dihydroxybenzaldehyde and monooctyl malonate.

(I)

The molecule of (I) has an E configuration; the carboxyl group and benzene ring are located on opposite sides of the $\mathrm{C} 7=\mathrm{C} 8$ bond (Fig. 1). All bond lengths and angles are in very close agreement with those found in similar caffeate structures (Xia et al., 2004; Xia \& Hu, 2005; Xia et al., 2005, 2005a,b, 2006). The whole molecule is almost planar, with a mean deviation from the least-squares plane of 0.042 (2) \AA, while atom C14 deviates from this plane by 0.133 (3) Å. Atoms C14C 17 form a plane, with a mean deviation of 0.009 (2) \AA, and atom C13 deviates from this plane by 0.105 (6) \AA. There is a bow angle of $7.12(3)^{\circ}$ at atom C 13 of the ester group.

In the crystal structure, hydroxy groups contrbute to intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), which link the molecules into ribbons extended in the (110) direction. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1) are also observed in these ribbons. The crystal packing (Fig. 2) is further stabilized by van der Waals forces.

Experimental

Meldrum's acid ($3.6 \mathrm{~g}, 25 \mathrm{mmol}$) was added to toluene (50 ml), and octanol ($3.25 \mathrm{~g}, 25 \mathrm{mmol}$) was then added. The mixture was heated and refluxed for 5 h . When the mixture was cooled to room temperature, 3,4-dihydroxybenzaldehyde ($1.4 \mathrm{~g}, 10 \mathrm{mmol}$), pyridine

Received 31 July 2006
Accepted 10 August 2006
$(2.5 \mathrm{ml})$ and piperidine $(0.25 \mathrm{ml})$ were added. The stirring continued at room temperature for 17 h . The solvents were distilled off in vacuo; the residue was dissolved in diethyl ether (30 ml), washed with a saturated solution of sodium bicarbonate $(2 \times 20 \mathrm{ml})$, diluted with hydrochloric acid $(20 \mathrm{ml})$ and distilled water $(20 \mathrm{ml})$. The diethyl ether was dried by anhydrous MgSO_{4} overnight. After removal of the drier, the solvent was distilled off to give a yellow solid ($2.6 \mathrm{~g}, 89 \%$). Recrystallization from a mixture of acetone, diethyl ether and water (8:1:1) gave light-brown crystalline prisms (m.p. 405-406 K).

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$
$M_{r}=292.36$
Triclinic, $P \overline{1}$
$a=5.454(2) \AA$
$b=12.152(5) \AA$
$c=12.584(5) \AA$
$\alpha=87.763(6)^{\circ}$
$\beta=80.560(6)^{\circ}$
$\gamma=81.395(5)^{\circ}$

Data collection

Bruker APEX CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.969, T_{\text {max }}=0.983$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.181$
$S=0.96$
3137 reflections
193 parameters
$V=813.4(6) \AA^{3}$
$Z=2$
$D_{x}=1.194 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, light brown
$0.25 \times 0.20 \times 0.20 \mathrm{~mm}$
$\beta=80.560(6)^{\circ}$

3778 measured reflections
3137 independent reflections
1607 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=26.0^{\circ}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 $\cdots \mathrm{O} 1$	0.82	2.26	$2.711(2)$	115
O2-H2 $^{\mathrm{i}}$	0.82	2.20	$2.914(2)$	146
O1-H1 $^{\text {i }}{ }^{\text {ii }}$	0.82	1.92	$2.738(2)$	173
C2-H2A $^{\mathrm{H}} \mathrm{OB}^{\mathrm{ii}}$	0.93	2.55	$3.231(3)$	130

Symmetry codes: (i) $-x,-y+2,-z$; (ii) $-x+1,-y+1,-z$.

The H atoms were placed in calculated positions $(\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{O}, \mathrm{C})$.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figure 1
The structure of (I), shown with 30% probability displacement ellipsoids.

Figure 2
The packing diagram of (I), viewed along the a axis, showing the hydrogen bonds as dashed lines.

We are grateful to the National Natural and Scientific Foundation (grant No. 20272053). We also acknowledge financial support by the Science and Technology Bureau of Zhejiang Province (grant No. 2005 C23022).

References

Bruker (2003). SADABS (Version 2.05), SAINT (Version 6.22), SHELXTL (Version 6.10) and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, W. K., Tsai, C. F., Liao, P. H., Kuo, S. C. \& Lee, Y. J. (1999). Chin. Pharm. J. 51, 271-278.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Son, S. \& Lewis, B. A. (2002). J. Agric. Food Chem. 50, 468-472.
Xia, C.-N. \& Hu, W.-X. (2005). J. Chem. Res. 5, 332-334.
Xia, C.-N., Hu, W.-X. \& Rao, G.-W. (2004). Acta Cryst. E60, o913-o914.
Xia, C.-N., Hu, W.-X. \& Zhou, W. (2005a). Acta Cryst. E61, o2896-o2898.
Xia, C.-N., Hu, W.-X. \& Zhou, W. (2005b). Acta Cryst. E61, o3757-o3758.
Xia, C.-N., Hu, W.-X. \& Zhou, W. (2006). Acta Cryst. E62, o1112-o1113.
Xia, C.-N., Zhou, W. \& Hu, W.-X. (2005). Acta Cryst. E61, o1783-o1784.

[^0]: © 2006 International Union of Crystallography All rights reserved

